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Experimental investigation of the generation and decay of coherent structures, namely,
streaks (accompanied by a counter-rotating vortex pair) and hairpin vortices in pipe
flow, is carried out by artificial injection of continuous disturbances. Flow visualization
and velocity measurements show that for small amplitudes of disturbances (v0) streaks
are produced, and increasing v0 produces instability waves on the streaks, which
further break down into an array of hairpin vortices. However, the streaks and
hairpins decay along the downstream direction (X). In fact, the critical value of v0

required for the initiation of hairpins at a given Re (Reynolds number) varies with
the streamwise distance (in contrast to the previously found scaling of v0 ∼ Re−1,
valid only close to the location of injection, i.e. smaller X). This is a consequence of
the decay of the coherent structures in the pipe. Moreover, the hairpins have been
found to decay more slowly with increasing Re. Measurements of energy in the cross-
sectional plane of the pipe, and maps of disturbance velocity at various X-locations
show the transient growth and decay of energy for relatively low v0. For higher v0

and Re the energy has been seen to increase continuously along the length of the pipe
under observation. Owing to the increase in the cross-sectional area occupied by the
disturbance along the X-direction, it is observed that energy can transiently increase
even when the total disturbance magnitude is decreasing. Observing the similarity of
the present work and other investigations wherein decay of turbulence in pipe flow is
found, a schematic illustration of the transition surface for pipe flow on a v0–Re–X,
three-dimensional coordinate system is presented.

1. Introduction
Many of the recent developments in pipe flow transition are summarized in the

review article by Eckhardt et al. (2007) and in the special issue of Phil. Trans. R. Soc.
A edited by Eckhardt (2009), commemorating the 125th anniversary of Reynolds’
seminal paper (Reynolds 1883) on pipe flow transition. This section highlights the
salient features of this long-standing problem. Experiments show that flow in a
pipe can be kept laminar to very high Reynolds numbers (Re = UclR0/ν, where
Ucl is the centreline velocity of the incoming laminar flow, R0 the radius of the
pipe and ν the kinematic viscosity of the fluid) up to 105 (Pfenniger 1961), in
accordance with the inability to find unstable waves by linear stability theory (e.g.
Meseguer & Trefethen 2003). However, the flow becomes turbulent for finite amplitude
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disturbances, the value of which decreases with increasing Re (e.g. Wygnanski &
Champagne 1973; Hof, Juel & Mullin 2003; Peixinho & Mullin 2007).

The failure of normal-mode linear stability analysis to predict unstable waves in pipe
flow has led to the search for other scenarios to explain energy amplification. The linear
transient growth scenario is the one in which the disturbance increases transiently and
may reach a significant amplitude that can trigger nonlinear mechanisms before its
long-time decay due to viscous effects (e.g. Reshotko & Tumin 2001; Schmid 2007).
It has been found by Schmid & Henningson (1994) that the initial structure which
amplifies the most is that of a steamwise independent counter-rotating vortex pair
(CVP) generating streaks. In fact, this mechanism is governed by a pair of almost
parallel two least stable modes, as demonstrated by Ben-Dov, Levinski & Cohen
(2003). Numerical simulations have shown that these streaks undergo secondary
instability (Zikanov 1996) and can lead to transition to turbulence (Meseguer 2003)
in pipe flow.

Streaks (produced via CVPs) and hairpin vortices are the coherent structures
which are a common feature of all turbulent boundary layers (e.g. Kline et al. 1967;
Robinson 1991). These structures have been observed recently in turbulent (Guala,
Hommema & Adrian 2006) and transitional (Mellibovsky & Meseguer 2007) pipe
flows. It is of interest to note that the streaky structures are also part of the exact
travelling wave solutions found by Hof et al. (2004), Wedin & Kerswell (2004) and
others. Hairpin vortices have been observed by Peixinho & Mullin (2007) in pipe flow
while generating disturbance with a push–pull mechanism. They note that for small
perturbations the hairpins decayed in their pipe.

Numerical investigations have shown that pipe flow turbulence consists of transients
(Brosa 1989) and that it exhibits a chaotic nature (Faisst & Eckhardt 2004).
Experimental evidence for such a scenario being present in pipe flow has been
found by Hof et al. (2006) and Peixinho & Mullin (2006).

In the present work a systematic experimental investigation of coherent structures,
i.e. streaks (and the accompanying CVPs) and hairpins, produced artificially by
introducing a steady and continuous disturbance in a pipe flow is presented. It includes
the formation and breakdown of the coherent structures and their decay along the
downstream direction. As mentioned above, streaks are formed due to a linear process
and hairpins are a result of nonlinearity (e.g. Suponitsky, Cohen & Bar-Yoseph
2005). This distinction will be taken into consideration when discussing the results
further below. Experimental set-up and measurement techniques are described in § 2.
Section 3 presents results pertaining to flow visualization and velocity measurements
along with the associated kinetic energy, its transient growth and growth/decay along
the streamwise direction. Results of instability caused by streaks and the role of
streamwise distance in pipe flow transition are discussed in § 4. Final conclusions are
drawn in § 5.

2. Experimental set-up
The pipe flow facility, standing vertically consists of two flow circuits, one for

the base flow and another one for the disturbance. Figure 1 describes the various
components associated with both circuits. For the base flow, water is stored in an
overhead tank of 30 l capacity. The flow passes through a honeycomb and then
through a smooth converging nozzle before entering the circular glass pipe having an
inner radius (R0) of 0.98 cm, a thickness of 0.12 mm and a total length of 230 R0. It
is mentioned here that this relatively short pipe is sufficient for our studies concerned
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Figure 1. The overall experimental set-up for pipe flow. The inset shows the cross-sectional
view of the location of disturbance injection.

with the linear (streak) to nonlinear (hairpin) state transition, which is evident from
a previous work on ‘channel flow’ (Philip, Svizher & Cohen 2007) on the generation
of hairpin vortices and the corresponding investigation of scaling laws. Therein, it is
shown that the transient growth process depends on the product v0 t (where t is time
and v0, the initial amplitude of the disturbance), and therefore the same transient
growth can be achieved at much shorter times (or X), if v0 is increased.

Water coming from the pipe exits at the bottom into a damper (to damp any
fluctuations remaining in the flow), and then to a temperature controller (which
maintains the temperature of water to ±0.1◦ C). The circuit is closed by the peristaltic
motor which pumps the water back into the overhead tank. It is noted that, due to
the presence of the damper and overhead tank, the downstream boundary conditions
of the pipe (including the various tubing) have not been observed to cause any effect
on the results presented. The flow rate can be controlled by changing the r.p.m. of
the motor, which translates to maintaining a laminar flow for Re within the range
of 250–3000 ± 1 %. The values of Re presented below are the mean values of the
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measurements. Considering the uncertainty mentioned in the Re, it could be rounded
to the last significant digit.

The disturbance flow is an open loop facility (unlike the base flow), wherein a
water-soluble dye is mixed with water and held in a small overhead tank. The mixture
is pumped through a small motor and after passing through a flow meter, metering
valve and a solenoid valve (which can be controlled by computer) it is injected into
the base flow at a downstream distance of about 114 R0, where the flow is close to
fully developed (the development of base flow is discussed later in association with
figure 3). The disturbance is introduced into the base flow using a custom made
injection system, a section of which is shown in the inset of figure 1. The system
is designed such that there would be optical access for visualization beginning as
close as possible to the injection point (∼1.5 R0). The injection hole has an inner
diameter of 0.8 mm and the flow rates (Qinj ) range from 0.5 to 7.0 ml min−1. The
parameter describing the disturbance flow is v0 = Qinj/(Sinj Ucl), where Sinj is the
cross-section area through which the disturbance is injected. The ratio of the volume
flux of disturbance to base flow used in the present investigation is between 0.17%
and 0.66 %. Flow visualization is accomplished by using a digital camera and a
strong incandescent light source. Two perpendicular views of coherent structures are
obtained at the same time on the camera by fixing an inclined mirror close to the
pipe. The two views cannot be focused perfectly on the camera because the distance
between the two actual images in the physical plane and image plane is different.
Moreover, to get a good picture quality the aperture is wide open which decreases the
depth of focus. So for the precise observation of the hairpin evolution, the camera
was focused more on the front view where heads of the hairpins could be observed
(e.g. figures 4 and 8). All the experiments begin by running the base flow for an initial
period of time until the temperature reaches a nominal value of 21.5◦ C.

Velocity measurements are accomplished using the technique of Particle Image
Velocimetry (PIV). The PIV system is a commercial one, purchased from TSI
Incorporated, with a dual Nd:YAG laser of 150 mJ pulse−1, 532 nm and a maximum
of 15 Hz pulse rate. In the present experiments the laser is always used below its
maximum available energy. The base flow is seeded for the purpose of PIV with
particles with a mean diameter of about 10 µm. For obtaining velocity fields of the
disturbance, the secondary flow is also seeded (containing the same particles as the
base flow). This caused slight clogging in the motor used for pumping the fluid (in
the flow visualization), resulting in abrupt variations in v0. To overcome this,
another more robust injection system is build, sketched in figure 2(a). It employs
a plunger/syringe which is filled with the disturbance fluid (with the seeding
particles) and using a computer-controlled linear motion traverse can inject the
continuous disturbance into the base flow. Once the whole fluid is injected, the syringe
automatically fills itself by travelling in the reverse direction and is ready for the next
round of injection. Even though the traverse could move at an accuracy of better than
1 µm, to minimize any remaining fluctuations in the disturbance due to the motion of
the traverse, a small fluctuation damping system is also built. It is placed just before the
location where the disturbance enters the pipe, and is shown in the inset for figure 2(a).
It is a container (in the present case a syringe) with part filled with the disturbance fluid
and the rest with air. The air provides the required damping, if any is necessary. The ad-
vantage of using a syringe is the possibility of changing the ratio of the air–disturbance
volume.

PIV images are taken when the plunger (or the main syringe) has been working for
some time to avoid any initial transient effects and to obtain a continuous disturbance.
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Figure 2. (a) Disturbance injection set-up used with PIV measurements. The inset shows
a fluctuation damping mechanism placed just before the disturbance enters the pipe.
(b) Schematic illustration of PIV set-up and section AA showing various planes for PIV
maps.

To minimize the curvature effects of the pipe during the PIV imaging process (see
figure 2b), a glass box filled with water, the working medium, is placed between the
camera and the main pipe. All the dimensions are normalized with the radius of the
pipe, R0 and Ucl . The normalized axial distance, X, is positive in the downstream
direction starting at the location where the disturbance is injected (figure 2b). PIV
measurements are carried out in planes parallel to the axis of the pipe and the axis
of the disturbance inlet, at different radial locations, as shown in section AA of
figure 2(b). The laser sheet along with the camera are mounted on a micrometre scale
which can be precisely positioned to get PIV maps (in the X–R plane) at various
radial measurement locations (Rm), from Rm = 0 at the centre, to 1 at the edge
of the pipe, in steps of 0.1R0. Since the disturbance is injected symmetrically to
Rm = 0, the measurements are confined to the left half of the pipe cross-section
relative to the injection (see figure 2b, section AA). The velocity maps are time
averaged over 40 different realizations obtained at a sampling frequency of 15 Hz
(which depending upon Re roughly translates to the crossing of about 5–10 hairpins).
For each Rm-location the velocity measurements from PIV are then averaged in the
steamwise direction (of about 1.5 R0) and the average is assigned to the mid X-value
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Figure 3. Centreline (Rm = 0) velocity profiles of the pipe for various Re; full line shows the
equivalent profile for a laminar pipe flow. (a) X = 3.7. (b) X = 85.7.

of the plane; furthermore all the Rm-locations are stitched together (to be explained in
detail later). To investigate the decay/growth of disturbances along the downstream
direction, the PIV set-up is moved to various X-locations and velocity measurements
are carried out. At each X-location experiments are conducted for different Reynolds
numbers and injection velocities.

A note is made of the fact that, since the values of v0 are normalized w.r.t. Ucl ,
a higher Re demands higher physical injection velocity, which beyond a certain
level causes the disturbance to strike the other side of the pipe and consequently
repeatable coherent structures are not possible to generate. On the other hand, lower
Re and even moderate v0 require a very low physical injection velocity which is
not possible to measure with the measurement system used. All the experiments are
designed under these restrictions, but were sufficiently effective for the present study,
for Re = 500–3000.

Typical centreline (Rm = 0) velocity profiles of the pipe for various Re are shown
in figure 3 at two extreme locations of observation, i.e. X = 3.7 and X = 85.7.
The experimental velocity profiles are normalized by their equivalent laminar volume
flux. There is a slight underdeveloped flow (calculated as (Ulam − Uexpt )/Ulam at
R = 0) at Re = 2838 and 1950 of 6.8% and 3.2 %, respectively. The results for the
formation of streaks and hairpins is negligibly affected by this, because the viscous
time scale is more than two orders of magnitude longer than the typical time scale
of hairpin generation. To provide an approximate estimate, the viscous time scale is
R2

0/ν ≈ 100 s, whereas the time scale on which hairpins are developed is given by
the reciprocal of their shedding frequency (a typical value of which is 2.2 Hz and is
obtained from figure 15b). Thus the viscous time scale is ≈200 times longer than the
typical time for hairpin shedding. Moreover, at the downstream location of X = 85.7
the underdevelopment for Re = 2838 is 3.7 % and for other Reynolds numbers the
development is better than 2 %.

3. Results
3.1. Critical disturbance amplitude for the generation and decay of streaks and hairpins

Flow visualization is carried out to observe the generation of streaks and hairpin
vortices in pipe flow. Water-soluble dye makes the various vortical structures visible
when a continuous jet of dyed disturbance fluid is injected into the pipe flow. Some
results of flow visualization are presented in figure 4. Streaks are generated for low
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Figure 4. Flow visualization results at Re = 1046 at X ≈ 6.6, showing two perpendicular
views of coherent structures in the pipe. (a) Generation of streaks for low values of v0.
(b) Generation of hairpins for v0 higher than the critical value.

values of injection (v0) as photographed in figure 4(a) at Re = 1046, where the
observation point (centred around X ≈ 6.6) is close to the disturbance inlet location.
It shows two simultaneously captured perpendicular views of the streaks or the CVP,
which are almost streamwise independent elongated structures. Increasing v0 beyond
a critical value (depending on Re), the streaks become unstable and an array of
hairpin vortices are generated, as shown in figure 4(b).

A detailed development of the coherent structures using flow visualization is shown
in figure 5 for Re = 1300 while increasing v0 (from figures 5a to 5f ). It is noted here
that unlike all the other flow visualization pictures presented in the present work, in
figure 5, the two sides of the pipe are taken independently to obtain better focusing.
For relatively low values of v0 (figure 5a) the side view shows a ‘single’ streaky
pattern and the front view shows the dyed disturbance attached very close to the pipe
wall. When v0 is increased to 0.33 (figure 5b) the streak becomes a ‘double’ legged
structure and instabilities slowly emerge in the front view. For the critical value of
v0 = 0.37 (figure 5c) tiny heads of hairpins begin to appear on top of the wavy streak.
Higher values of v0 clearly enables (in the ‘front view’) a better visualization of the
hairpins’ appearance when their heads emerge out of the streaks. Figure 5(f ) shows
the typically large hairpins when v0 is increased to a sufficiently high value.

By varying Re, the observed critical values are plotted on a log–log scale in figure 7
for X = 6.6. The line plotted through the observation points show a scaling law of
v0 ∼ Re−1 (Cohen, Philip & Ben-Dov 2009). Here the exponent −1 is obtained in our
relatively short pipe flow facility. The same scaling law was previously obtained by
Hof et al. (2003), indicating transition to a turbulent state in their long pipe of 785
diameters. The importance of coherent structures for the purpose of obtaining scaling
laws in relatively short channels is described in Philip et al. (2007). The idea there is
to reduce the time scales of the formation of coherent structures by increasing the
injection velocity. The present work carried out in pipe flow is in the same spirit.

At a further downstream distance (from the location of injection) the hairpins
are observed to decay (or disintegrate) leaving a streaky kind of structure. For
Re = 1046 and v0 = 0.525 figure 6(a(i)) shows the side view of hairpins at X ≈ 8
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Figure 5. Flow visualization results at Re = 1300 at X ≈ 6.6, showing two perpendicular
views of coherent structures in the pipe (captured independently for better focusing, unlike
figure 4). The scales shown in the photographs have gradations that are 1 mm apart. (a)
v0 = 0.25. (b) v0 = 0.33. (c) v0 = 0.37. (d ) v0 = 0.38. (e) v0 = 0.43. (f ) v0 = 0.56.

and figure 6(a(ii)) shows the flow under the same conditions but at a downstream
distance of X ≈ 46. The hairpins are not observed downstream indicating their decay
as they proceed in the flow direction. Centreline velocity profiles (at Rm = 0) of u,
(the difference between the base flow and the flow with the disturbance for the same
flow conditions) are shown in figure 6(b). The distribution of u for X = 3.7 is that
of hairpin vortices. With increasing X, u vanishes, implying that the velocity profile
returns back to the parabolic velocity profile of the laminar flow. The decay of hairpin
vortices with increasing X points to the fact that the critical v0 at which hairpins
are first observed should vary with the downstream distance. Plotting in figure 7 the
critical v0 (for two additional X-locations) shows that, for the same Re, a higher v0

is required when the observation point is moved downstream for the first appearance
of hairpins. For a constant v0, the spacing between the three different lines indicates
that hairpins decay more slowly as the Reynolds number is increased. Each point
in figure 7 is checked by conducting at least three different experiments and the
average value of the observations is presented. The error bars in the figure show
the experimental uncertainty encountered in the measurements of v0 and Re. One
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Figure 6. Decay of hairpins for Re = 1046 and v0 = 0.525. (a) Results from flow visualization,
(i) X ≈ 8, (ii) X ≈ 46. (b) Distributions of u (the difference between the base flow and the flow
with the disturbance) along the centreline (Rm = 0) for increasing X-locations, obtained from
PIV maps. The photograph in (a) has been reworked for clarity by removing the background
noise and enhancing the coherent structures using fewer levels of grey scale.
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Figure 7. Log–log plot of v0 versus Re for the initiation of hairpin vortices for different
X-locations. The variation in the slopes shows the decay of hairpin vortices along the
streamwise direction. Even though this figure is plotted on a log–log plot and suits well
the present set of data, if more measurements with a broader range were used, it could not be
stated conclusively that the data will still follow the logarithmic scale.
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Figure 8. Flow visualization results at Re = 1300 and v0 = 0.37 indicating the instability
growing over the streaks. The figure shows the side view of the wavy streaks.

single point corresponding to Re = 1300 and the critical v0 = 0.37 (shown by a circle
in figure 7) has been checked more thoroughly with two different injection set-ups
to confirm the validity of the measurements. The observation of critical v0 becomes
difficult when higher Reynolds numbers are approached; so the protrusion of the
head of the hairpins above the base streak is observed through a video to identify
critical v0 (as seen in figure 5).

To illustrate the instability of streaks, figure 8 shows a clearer photograph of the
growth of waves over streaks for a particular Re = 1300 and the corresponding
critical injection velocity v0 = 0.37. The location of this point is shown with a circle
on the log–log graph of figure 7. The base flow in this figure is from right to left
and the spacing between each gradation on the scale is 1 mm. The figure is the side
view wherein the wavy structure of the streaks is visible. The instability observed
is that of varicose type which can give rise to hairpin vortices. The determination
of the critical amplitude was done through a careful examination of the videos of
hairpin generation. It is noted that the amount of dye in the disturbance can also
have a small effect on the observation of the initiation of hairpins; to minimize which,
the smallest concentration of the dye (which is still possible to observe) has been
employed. Prior to this, several preliminary visualization studies were conducted to
practice the detection of the hairpin vortices and to check the dye effect. After few
readings the whole closed-loop base flow is removed and refilled with fresh water,
as the whole water system becomes coloured, making the detection of the hairpins
difficult.

3.2. Transient growth of energy and its decay along the streamwise direction

To explain the deduction of disturbance velocity and vorticity maps in the R–θ plane,
and the disturbance energy (to be defined later) at a particular X-location from several
PIV maps obtained at various Rm-locations (see figure 2b), the processing of data
is presented for a particular case (with Re = 2838 and v0 = 0.525). Later, the same
process will be applied to various Reynolds numbers and v0 at various X-locations
for the presentation of comparative results.

Figure 9 shows velocity maps obtained at Re = 2838 at X = 3.7 (the closest axial
location to the disturbance injection) for v0 = 0.525. This is the highest Re used in this
study and therefore, corresponds to the least fully developed base flow. Figure 9(a–d )
presents results for four different Rm-locations with each one of them averaged over 40
realizations. Figure 9(a(i)–d (i)) (the top row) shows the corresponding laminar velocity
profile (for the same volume flux), the base flow (without disturbance, v0) and the flow
with v0. (Note that the measured velocities are shown in the downwards, negative
direction, corresponding to the direction of the flow in the experimental set-up.)
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Figure 9. PIV results for Re = 2838, v0 = 0.525 and X = 3.7. (a) Rm = 0, (b) Rm = 0.1, (c) Rm = 0.2 and (d ) Rm = 0.3, (i) averaged base flow,
disturbance and analytical velocity profiles, (ii) absolute values of disturbance velocity, (iii) maps of (u, v), shaded by vorticity in the measurement
plane.
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Figure 9(a(ii)–d (ii)) (the middle row) presents the magnitude of the disturbance velo-
city (the difference between the base flow and the flow with the disturbance, u - axial,
v - perpendicular to u in the plane). Figure 9(a(iii)–d (iii)) (the bottom row) shows
the disturbance PIV map (with shades showing the associated disturbance vorticity,
∂u/∂R − ∂v/∂X, in the measurement plane).

The velocity profiles are obtained by averaging the PIV map that is about 1.5 in the
X -direction (small compared to the separation distance between two consecutive axial
measurement points which varies between 10 and 46). Increasing Rm (i.e. coming closer
to the wall), figure 9 shows that the total base flow velocity decreases (observed by the
decreasing magnitude of U ), and the effect of the disturbance also diminishes (which
can be observed by the decreasing magnitudes of u and the fading of vorticity in the
vector maps). The vector maps are restricted to Rm-locations where the disturbance
field is still significant (which is also a function of Re, v0 and X-location). In this
example velocity measurements are carried out at four Rm-locations. It should be
emphasized here that the number of Rm-locations in each experiment is a variable
and it is decided such as to capture the disturbance fully at each X-location. The
influence of the disturbance in the R–θ plane is felt (as observed in the PIV image)
in the pipe to varying degrees, depending primarily on v0 and X-location and to a
lesser degree on Re. So each time an experiment is started, the plane Rm = 0 is first
captured, and then the Rm is increased in steps of 0.1R0 (as mentioned above), till
that Rm where the disturbance is no longer affecting the flow. To give some examples,
in figures 9 and 10 there are four Rm-locations, but there are eight in figure 11(c(4d )),
and seven Rm-locations in figure 11(c(4e)).

Once the axial disturbance velocity at all Rm-locations is obtained, they are stitched
together with the aid of interpolation to get a map of u, at a particular X -location.
The data of u from figure 9(a(ii)–d (ii)) are plotted in figure 10(a(i)), with blue and
red corresponding to regions where the velocity of flow with the disturbance is higher
and lower, respectively, than the base flow. The data are then extrapolated (assuming
that u vanishes in 0.2R0 from the last Rm-location where the data are obtained)
and reflected (since the disturbance is symmetrically injected), to obtain a map for
u in the whole R–θ plane, as presented in figure 10(a(ii)). The energy (defined in
(3.1)) is calculated by two methods; one, by the measured data and, second, by
extrapolating those values of u. Any error involved in this extrapolation is less than
the size of the symbols used to present the data in figures 11(a) and 13. Forming a
local two-dimensional coordinate system, x1 and x2 (as shown in figure 10a(ii)), an
in-plane vorticity, ωx1x2

(e.g. van Doorne & Westerweel 2009) can be defined as the
first expression in (3.1). In the present case, it represents the averaged projection of
the coherent structure (streak or hairpin) onto a single R–θ plane. The distribution
of ωx1x2

shows the variation of the averaged axial disturbance velocity formed by
the coherent structure (over an axial distance of about 1.5 R0,) projected in the R–θ

plane. Furthermore a norm indicating the strength of the disturbance is taken as the
energy, E(X). Both ωx1x2

and E(X) are defined as

ωx1x2
=

√(
∂u

∂x1

)2

+

(
∂u

∂x2

)2

and E(X) =

∫ 2π

0

∫ 1

0

u2 r dr dθ. (3.1)

For example, the energy (E(X = 3.7)) for the disturbance in figure 10(a(ii)) is
1.23 × 10−3, which is approximately 1.2 % of the base flow energy. The contours of
ωx1x2

are plotted in figure 10(b).
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Figure 11. Development of disturbance in the axial direction for Re = 777. (a) log–log plot
of the variation of energy along the steamwise direction for varying v0. (b) Same data as
(a) but on a flooded plot of energy on a v0 versus X plane. (c) Variation of u in X-direction,
(i) v0 = 2.0, (ii) v0 = 1.0.

Figure 11 shows the development of the disturbance in the axial direction for Re =
777 and various v0. PIV measurements are performed at five different X-locations,
corresponding to X = 3.7, 13.6, 26.7, 39.5 and 85.7. Figure 11(a) is an E versus X log–
log plot for four different v0, where, for each v0, the energy increases transiently and
then there is a sharp decay, with approximately the same decay rates. The same data
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are shown in a different form in figure 11(b), where filled-contour map of energy is
presented (in colour) on a v0 versus X plot. For convenience various regions in the map
are labelled from 1 to 4 and (a to e) indicating v0 and X-location of measurements,
respectively. Figure 11(c) plots u for two v0; v0 = 2.0 (top row) and v0 = 1.0
(bottom row), at five different X, labelled from 4a to 4e and 2a to 2e, respectively,
in correspondence with the labels in figure 11(b). The difference in the way the
disturbance evolves in both cases can be seen distinctly; for v0 = 2.0, increase in energy
is attributed to the increases in the magnitude of disturbance as well as the region in
the R–θ plane where the influence of the disturbance is felt, also referred to here as
the area of influence (AoI), and the decay is due to decrease in the magnitude. On the
contrary, for v0 = 1.0, the magnitude of the disturbance is continuously decreasing
while any initial increase in energy is due to the increase in the AoI and the decay is
due to approximately constant AoI (figure 11c(2c–e)) and decreasing magnitude.

In figure 11(b) the (white) demarcating dashed line (plotted from the data of
figure 7 for Re = 777) shows approximately the conditions where the hairpins appear
for the first time, based on the flow visualization results. In figure 7, at Re = 777,
a vertical line will cut three X lines (corresponding to three X-locations) at three
points corresponding to three values of v0. These three values (of X, v0) are plotted
in figure 11(b) and a line is drawn through them. The region below the line contains
only streaks and above it hairpins and other nonlinear processes appear. The line
can be interpreted as the boundary separating the linear and the nonlinear processes.
To further clarify the boundary and as a quantitative confirmation of the flow
visualization, figures 12(a) and 12(b) show the contours of ωx1x2

at X-locations a

and b, respectively, for increasing v0. For a low injection velocity, in figure 12(a(1a))
the contours show the streamwise vortices (from the accompanying streaks). As the
downstream distance is increased the vortices move towards the centre and stretch, as
observed in figure 12(b(1b)). Increasing v0 produces hairpin vortices of higher strength
which move closer to the other side of the wall. A similar effect is observed when X is
increased. It can be noticed that for the highest v0, the hairpin appears immediately
at the centre of the pipe (figure 12a(4a)) and moving further downstream causes
the hairpin to hit the opposite side of the wall (figure 12b(4b)). The observation
of streamwise vortices (or streaks) and hairpins from the vorticity contours are in
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and 1950. (b) v0 = 1.0 and Re = 1950 and 1046.

accordance with those found by flow visualization, and depicted by the dashed line
in figure 11(b). No clear coherent structures are found for higher v0 because the form
of the disturbance is destroyed by the disturbance hitting the other side of the wall,
and also with increasing downstream location they lose their coherence. Therefore
the structures are difficult to be captured in the averaged vorticity contours.

The evolution of the disturbance for higher Re is presented next. Figure 13(a)
shows on a log–log graph the evolution of energy for Re = 2838 and 1950 for
v0 = 0.525. For Re = 1950, the energy increases for some downstream distance but
then decays, whereas for Re = 2838, the disturbance continues to increase and does
not decay in the limited axial distance of measurements presented here. Based on
visual observation, it seems that at this high Re, the disturbance does not decay
downstream but continues to increase to make the flow completely turbulent further
downstream. For a higher v0 = 1.0, in figure 13(b), energy for Re = 1950 does not
decay, unlike v0 = 0.525. The experiments for a lower Re = 1046 show the usual
transient increase and further decay of energy. Figure 14 shows the structure of u

in the R–θ plane corresponding to the energy plots in figure 13. Figures 14(a) and
14(b) present the evolution of the disturbance at v0 = 0.525, for Re = 2838 and
Re = 1950, respectively. For Re = 2838, the disturbance increases in both magnitude
and area with increasing X, and consequently the energy also increases, whereas for
Re = 1950, the energy decreases as a result of the decreasing magnitude of u. The
initial amplitude (v0 = 0.525) at Re = 2838 is large enough for the disturbance to
increase continuously in the present experiment, unlike for the case of Re = 1950.
However, for v0 = 1.0 and Re = 1950, figure 14(c) shows the increase in area occupied
by u (or an increase in AoI) resulting in the increase in E, even though the magnitude
of u is decreasing with X. And for Re = 1046 and v0 = 1.0, as shown in figure 14(d ), u
decays and subsequently the energy also decays (even though E increases transiently
due to increasing AoI). Thus, it can be concluded that the energy of the disturbance
is a function of both the amplitude of disturbance and the area of influence.

4. Discussion
Transient growth has proved quite successful in providing a growth mechanism

where linear mode analysis fails to predict instability. The disturbance that grows
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the most includes a combination of many normal modes and has been found to be
streamwise independent vortices forming streaks (Schmid & Henningson 1994). The
same mechanism can also be explained by considering two least stable modes of pipe
flow (Ben-Dov et al. 2003; Cohen et al. 2009). The existence of such structures in
pipe flow is demonstrated here. However, as seen in figure 11(a) for v0 = 0.525,
streamwise vortices (or streaks) are not extended infinitely in the streamwise direction,
which is the usual assumption in theoretical considerations, instead they decay
downstream in about 10–15 diameters. However, compared to the core diameter
of the CVPs, their length is about two orders of magnitude greater.

Both flow visualization and velocity measurements show that for a particular Re

and X-location for small values of v0, streaks (or counter-rotating vortices) are formed
and beyond a critical v0 when streaks become stronger, hairpin vortices are generated
(e.g. figure 4). Observations show that on increasing v0, the streaks become wavy and
from the crest of these waves, an array of hairpins appears (e.g. figure 8). It is also
observed that the velocity profiles of the flow with the disturbance are inflectional,
suggesting the possibility of an instability. To check this, stability analysis is performed
based on two centreline velocity profiles at Re = 777 and 1046 for v0 = 0.525, shown
in figure 15(a), for X = 3.7. It can be seen from figure 7, that for Re = 777 and
v0 = 0.525, only stable streaks are observed and whereas at Re = 1046, v0 is just
sufficient to produce hairpins. Spatial linear stability equations (Orr–Sommerfeld and
Squire) for the two base flow velocity profiles are solved using a spectral method
employing 120 Chebychev polynomials, assuming a variation in the base flow profiles
only in the radial coordinate. The results show the existence of unstable modes for
Re = 1046 and stable ones for 777. The growth rate (−αi) versus frequency in
dimensional values is plotted in figure 15(b). The most unstable wave for Re = 1046
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has a frequency of 2.2 Hz and has an associated wavelength (αr in figure 15c) of
2.65 cm. The measured wavelength in the experiment is about 2.1 cm (see the inset
in figure 15c which is based on figure 6a(i)). The closeness of the observed and
predicted values (even when the assumptions of a parallel and two-dimensional flow
are not fully justified) shows that the inflectional instability particularly dominates
the wavelength selection during the formation of hairpins.

The numerical study by Zikanov (1996) of temporal secondary instability of streaks
by three-dimensional perturbations shows transient growth and decay of energy for
small streak amplitudes and a continuous increase for larger amplitudes. This is in
accordance with the results presented here. Transition to turbulence in pipe flow has
also been observed to be associated with the secondary instability of streaks (Meseguer
2003). The phenomenon of streak generation and their breakdown due to secondary
instability is quite general and is found in other flows too, where subcritical transition
takes place, for example, in boundary layer flows (e.g. Matsubara & Alfredsson 2001;
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Schlatter et al. 2008) and in plane channel flow (e.g. Elofsson & Alfredsson 1998;
Philip et al. 2007).

It is interesting to note that the streaks and hairpins are generated in a similar
manner by Svizher & Cohen (2006) and Philip et al. (2007) in channel flows. They,
however, have not observed any decay of the streaks or hairpins along the streamwise
direction (see for example, Svizher & Cohen 2006, figure 6). This difference between
the channel and pipe flow is probably due to the confining effects of the wall in a
pipe which is absent in a two-dimensional channel. It is also noted that there is a
fairly large body of studies related to the jet-in-cross-flow (e.g. Fric & Roshko 1994;
Bagheri et al. 2009 and references therein), though not in pipe flow that we know
of. The emphasis in these studies are mainly on higher values of v0 which give rise
to more complicated structures than streaks and hairpin vortices. It is also worth
mentioning the study by Sau & Mahesh (2008) wherein a numerical simulation for a
low v0 (or jet-to-cross-flow velocity ratio) gives rise to the shedding of hairpin vortices
in a laminar boundary layer.

Streaks are generated via a linear process whereas the generation of hairpin vortices
is a nonlinear process, initiated by the breakdown of these streaks due to secondary
instability. Hairpin vortices are three-dimensional rotational and induce high mixing
in the flow (relative to molecular diffusion). All the characteristics that represent
hairpins (observed in relatively laminar base flows, like in the present experiments)
also apply to a regular turbulent flow. Hairpins that are found in fully turbulent flow
are believed to be the main coherent structure that gives turbulence its characteristic
form. It has been also found (Cohen et al. 2009) that the scaling of v0 ∼ Re−1

is required to cross from the linear regime with streaks to the nonlinear one with
hairpins (for small X-locations). This is the same scaling as observed in the ‘real’
transition of laminar state to turbulent in pipe flow by Hof et al. (2003), showing
that the Re at which turbulence is generated is a function of the amplitude of the
disturbance, D . In the present paper the amplitude of the disturbance is denoted by
v0, but, can also be taken as E(0), like in many theoretical/numerical works.

As presented in the previous section, both streaks and hairpin vortices may decay
downstream depending upon the values of v0, X and Re, showing that the scaling
of v0 ∼ Re−1 varies downstream. Recently, it has been observed that turbulence in
pipe flow has a tendency to decay (e.g. Hof et al. 2006; Peixinho & Mullin 2006).
Once the turbulence is generated, it seems to decay along the length of the pipe.
This points to the fact that apart from the already existing parameters of Re and
disturbance amplitude D on which the transition to turbulence in pipes depends,
another relevant parameter is L . Here, L is the length of the pipe in which the flow
remains turbulent starting from the location of perturbation (or the equivalent time)
and beyond which the flow is laminar. The many similarities that have been observed
between the linear–nonlinear transition (in the present work) and laminar–turbulent
transition compel one to present graphically the stability diagram of laminar–turbulent
transition drawing ideas based on the data of the present work and other studies on
laminar–turbulent transition.

Decay of streaks and hairpin vortices along the downstream direction (shown in
figure 7) depends upon the values of v0, X and Re. The fit of data presented in
figure 7 is plotted again in figure 16 (shown by three dark lines, and in-between
values interpolated) on a three-dimensional coordinate system, with v0, X and Re as
the three axes. The surface demarcates the linear and nonlinear processes. It is noted
that the volume under that linear regime increases with streamwise location as an
indicator of the decaying hairpins.
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and it is also the lower limit found by transient growth analysis (Schmid & Henningson 1994).

Based on the laminar–turbulent transition studies and the present work, a schematic
diagram of pipe-transition surface is presented in figure 17, where the ‘solid’ region
represents the laminar state and the remaining, turbulent. It can be seen that for
L (or X)= 0, the figure recovers the usual stability diagram (e.g. Joseph 1976,
p. 9). For higher values of D (i.e. values of D corresponding to L = 0 and in
the proximity of, but greater than Re ≈ 1850), the variations in the L –Re planes
due to changes in D are negligible. This is in accordance with the recent studies
(e.g. de Lozar & Hof 2009) where it has been shown that lifetimes of puffs (here
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represented as an equivalent L ), when plotted against Re, are independent of the
perturbation amplitude (D). Moreover, to draw the schematic diagram in figure 17,
the understanding of the linear stage as the representative of the laminar state and
the beginning of nonlinearity (marked by the initiation of hairpins) as the beginning
of the turbulent state is also employed. The similarity of the surfaces presented in
figures 16 and 17 is noted. With increasing L (or X), the domain of laminar flows
(in figure 17) or the linear regime of streaks (in figure 16) increases, and consequently
that of turbulence or that of the nonlinear effects along with the hairpin vortices
decreases. Even though there is necessarily no direct relation between our present
findings (of transition from linear to nonlinear states in pipe flow) and the pipe flow
transition itself, the phenomenological similarity between the two types of outlook is
clear.

A point to be noted is that transition to turbulence in pipes has been found to be
sensitive to the initial conditions (e.g. Brosa 1989; Darbyshire & Mullin 1995; Faisst
& Eckhardt 2004), therefore statistical tools have been employed for the analysis
of the data. In the present study, however, the disturbance is produced continuously
(rather than intermittently, as normally done to produce puffs of turbulent flows)
in a predominantly laminar flow. This ensures in the present study that streaks and
hairpins vortices that are produced are indeed repeatable. Moreover, to justify the
quasi-steady measurements along the axial direction in this study, it is mentioned
that, since the experiments have an almost steady flow (or time periodic when
hairpins are generated), the dependence is only spatial.

5. Summary and conclusions
Continuous disturbances are introduced into pipe flow producing two coherent

structures, commonly found in transitional and turbulent boundary layers: streaks
(accompanied by counter-rotating vortices) and hairpin vortices. The former is a well-
known structure resulting from the linear process and the latter is a manifestation
of nonlinear processes. Flow visualization and PIV measurements are carried out
for various Reynolds numbers, amplitudes of disturbance and at various streamwise
locations, allowing the study of the formation and the subsequent evolution of the
coherent structures.

For all Reynolds numbers, streaks with high- and low-velocity regions are formed
for low levels of disturbance amplitude. An increase in the initial amplitude causes
the instability of the streaks and further breakdown into an array of hairpin vortices.
It is also shown here that the combined pipe Poiseuille flow and streak velocity
profile is unstable and produces wavy structure, the wavelength of which can be
fairly well predicted by a simple stability analysis. Furthermore, from the crests of
these waves the hairpins first appear. Scaling of critical amplitude of disturbance,
v0, for the initiation of hairpins and Re, follows v0 ∼ Re−1 (Cohen et al. 2009), for
the observation point very close to the injection of the disturbance. However, streaks
and hairpins are found to be decaying in the streamwise direction once they are
generated in the pipe flow, and thus correspond to varying decay laws for different
downstream distances. Moreover, the hairpins have been found to decay more slowly
with increasing Re. Velocity measurements and the subsequent in-plane vorticity in
the R–θ plane confirm the existence and evolution of the coherent structures observed
in the flow visualizations.

The amplitude of the disturbance is measured at various downstream distances and
cross-sectional energy is evaluated. In all cases studied, the energy always increases
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initially and later it can decrease, except for high v0 and Re (e.g. for Re = 2835 and
1950, and the value of v0 = 0.525 and 1.0, respectively). The transient energy growth
at any X-location depends upon the values of v0 and Re; for higher v0 or/and higher
Re there is a higher energy growth (e.g. figure 11a, v0 = 2; figures 13a (Re = 2838)
and 13b (Re = 1950)), whereas for lower values of v0 or/and Re, the growth is lower
(e.g. figure 11a, v0 = 1, 0.525; figures 13a (Re = 1950) and 13b (Re = 1046)). The
disturbance while propagating downstream spreads in the R–θ plane and consequently
the associated energy of the disturbance, which has contributions both from the area
of influence of the disturbance at each cross-section and its magnitude, continues to
change. Both contributions have been found to be of importance in the study carried
out.

Finally, the surface which forms the boundary in the v0, Re, X-space, separating the
linear process and the nonlinear ones has a close connection with a boundary that one
would expect to see between the laminar and the turbulent states of motion in pipe
flow. Even though the recent research activities concerning the decay of turbulence
have been of great importance, much of the boundary, presented schematically in
figure 17 is yet to be revealed.
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